National Aeronautics and Space Administration

EXPLORESPACE TECH

In Situ Propellant and Consumable Production (ISPCP)

Gerald Sanders - System Capability Leader for In-Situ Resource Utilization

In Situ Propellant & Consumable Production (ISPCP) **Driving Outcomes**

LEAD

THRUSTS

OUTCOMES

Ensuring American global leadership in Space Technology

- Lunar Exploration building to Mars and new discoveries at extreme locations
- Robust national space technology engine to meet national needs
- U.S. economic growth for space industry
- Expanded commercial enterprise in space

Go Rapid, Safe, & Efficient Space Transportation

- Enable Human Earth-to-Mars Round Trip mission durations less than 750 days.
- · Enable rapid, low cost delivery of robotic payloads to Moon, Mars and
- Enable reusable, safe launch and in-space propulsion systems that reduce launch and operational costs/complexity and leverage potential destination based ISRU for propellants.

Land

Expanded Access to Diverse Surface Destinations

- Enable Lunar and Mars Global Access with ~20t payloads to support human missions.
- Land Payloads within 50 meters accuracy while also avoiding local landing hazards.

Live

Sustainable Living and Working Farther from Earth

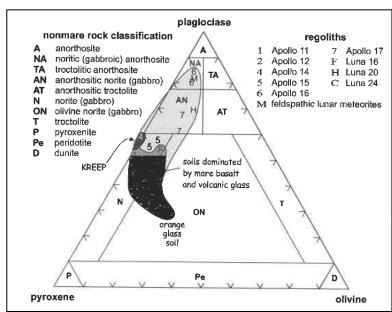
- Conduct Human/Robotic Lunar Surface Missions in excess of 28 days without resupply.
- · Conduct Human Mars Missions in excess of 800 days including transit without resupply.
- Provide greater than 75% of propellant and water/air consumables from local resources for Lunar and Mars missions.

 Enable Surface habitats that utilize local construction resources.
- · Enable Intelligent robotic systems augmenting operations during crewed and un-crewed mission segments.

Explore

Transformative Missions and Discoveries

- Enable new discoveries at the Moon, Mars and other extreme locations.
- Enable new architectures that are more rapid, affordable, or capable than previously achievable.
- Enable new approaches for in-space servicing, assembly and manufacturing.
- Enable next generation space data processing with higher performance computing, communications and navigation in harsh deep space environments.


- Resource Mapping/Estimation: Enable global and detailed local and subsurface mapping of lunar resources and terrain, especially for water in permanently shadowed craters, for science, future exploration, and commercial use
- Oxygen Extraction: Enable extraction and production of oxygen from lunar regolith to provide 10's of metric tons per year, for up to 5 years with little human involvement and maintenance, for reusable surface and ascent/descent transportation.
- Water Mining: Enable cis-lunar commercial markets through extraction of water resources to provide 100's of metric tons of propellant per year for reusable landers and cis-lunar transportation systems

Lunar Resources

Lunar Regolith

- >40% Oxygen by mass
 - Silicate minerals make up over 90% of the Moon
- Regolith
 - Mare: Basalt (plagioclase, pyroxene, olivine)
 - Highland/Polar: >75% anorthite, iron poor
- Pyroclastic Glass
- KREEP (Potassium, Rare Earth Elements, Phosphorous)
- Solar Wind Implanted Volatiles

From New Views of the Moon

Polar Water/Volatiles

- LCROSS impact estimated 5.5 wt% water along with other volatiles
- Green and blue dots show positive results for surface water ice and temperatures <110 K using orbital data.
- Spectral modeling shows that some ice-bearing pixels may contain
 ~30 wt % ice (mixed with dry regolith)
- Without direct measurements, form, concentration, and distribution of water is unknown

	North Pole		South Pole	
Α	180°	В	0°	
80° - 90° N	210°	80° - 90° S	30°	
5	6 12	00 - 90 3		
240°		120° 300°	60°	
			2	
270		90° 270°		0°
8	The VINE AND THE	3		
•	100		0 60	
300°		60° 240°	120	
2				
40	1	1631		
	The state of the s	er annual maximum temperature (K)	16 16 16 10 Sec.	
	0°	110 160 230 290 >320	180°	
Ice expos	sures constrained by M3, LOLA, and Div	iner olce expo	osures constrained by M³, LOLA, Diviner, and LAMP	

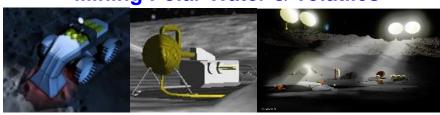
Li et. al, (2018), Direct evidence of surface exposed water ice in the lunar polar regions

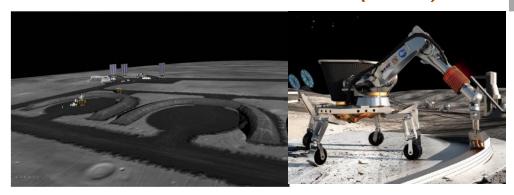
H₂O	5.5
co	0.70
H ₂	1.40
H₂S	1.74
Ca	0.20
Hg	0.24
NH₃	0.31
Mg	0.40
SO ₂	0.64
C₂H₄	0.27
CO2	0.32
CH ₃ OH	0.15
CH₄	0.03
ОН	0.00
H ₂ O (adsorb)	0.001-0.002
Na	

Concentration (%wt)*

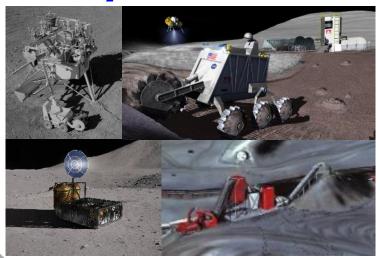
Lunar Surface ISPCP Capabilities 'Prospect to Product'

Resource Assessment – Looking for Water/Minerals

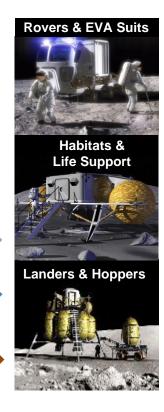



Local Assessment

Mining Polar Water & Volatiles



Landing Pads, Berms, Roads, Shielding and Structure Construction (AMSM)


Excavation & Regolith Processing for O₂ & Metal Production

Consumable Storage & Delivery (CFM)

Consumable Users

ISPCP Functional Breakdown

- All Functions have been mapped to interactions with other STPs
- Functions used as starting point for technology and gap assessments
- > Emphasis placed on Bolded Functions

Destination Reconnaissance and Resource Assessment

- Site Imaging/Terrain Mapping
- Instruments for Resource Assessment
- Orbital Resource Evaluation
- Local Surface Resource Evaluation
- Resource/Terrain/Environment Data Fusion and Analyses

Resource Acquisition, Isolation, and Preparation

- Resource Excavation & Acquisition
- Resource Preparation before Processing
- Resource Transfer
- Resource Delivery from Mine Site and Removal

Resource Processing for Production of Mission Consumables

- Resource Storage and Feed To/From Processing Reactor
- Regolith Processing to Extract Oxygen
- Regolith Processing to Extract Water
- Carbon Dioxide Processing
- Water Processing
- Instrumentation to Characterize Processing Performance
- Product/Reactant Separation
- Contaminant Removal from Reagents/Products

Resource Processing for Production of Manufacturing and Construction Feedstock

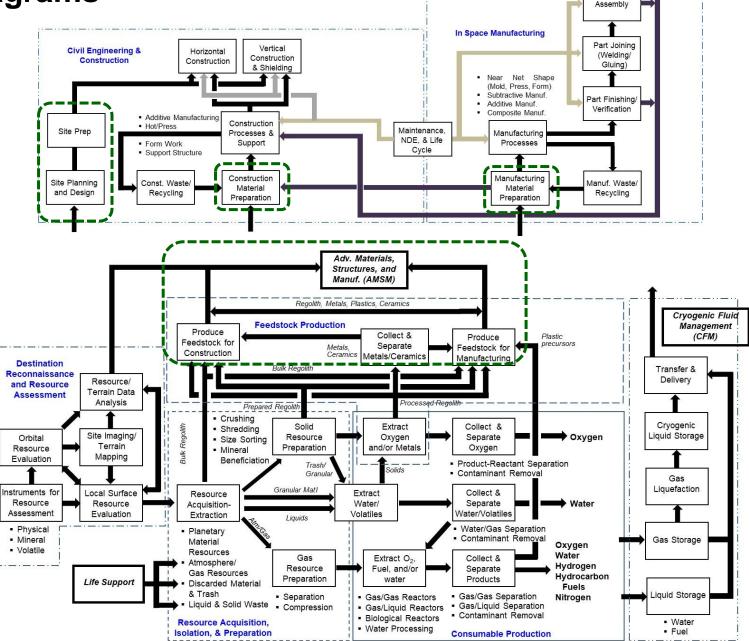
- In Situ Excavation and Movement for Construction
- Resource Preparation for Construction Feedstock
- Material transfer
- Resource Processing to Extract Metals/Silicon
- Resource-Trash/Waste Gas Processing to Produce Methane/Plastics

Cross Cutting

- Planetary Simulants for Test & Verification
- Planetary Regolith/Environment Test Chambers

Shared Interest/Responsibilities with Advanced Manufacturing Structures, and Manufacturing (AMSM) STP

- PT Materials and Manufacturing J. Vickers
- PT Materials, Structures, and Nanotechnology M. Hilburger



ISRU Functional Block Diagrams

Use to

- Help understand connectivity:
 - Internally
 - With other STPs
 - Cross-cutting w/ AMSM
- Focus assessment of technology options in each sub-function
- Understand influence of technologies on complete system

ISRU Functional And Gap Connectivity to Other STPs

WBS#	In Situ Propellant & Consumable Production	In Situ Prop/Consumables	Cryogenic Fluid Management	Advanced Life Support & Human Performance	Adv Materials, Structures, and	Manufacturing	Advanced Power Systems	Autonomous Sys. & Robotics	Extreme Access/Environment	On-orbit Servicing, Assembly, and Manufacturing	Advanced Avionics	Advanced Communications & Navigation	Small Spacecraft
1.0	Destination Reconnaissance and Resource Assessment												
1.1	Site Imaging/Terrain Mapping							2					
1.2	Instruments for Resource Assessment												
	Instruments for Physical/Geotechnical Characterization	1											
	Instruments for Mineral/Chemical Characterization	1											
	Instruments for Volatile Characterization	4											
1.3	Orbital Site and Resource Evaluation	2											6
1.4	Local Surface Resource Evaluation												
	Instrument Integration/operation	1											
	Mobility-Traversibility for Resource Assessment	1						1					
	Remote Ops/Autonomy for Resource Assessment							1					
	Comm&Nav for Resource Assessment							1		4			
	Power in Extreme Environment												
1.5	Resource/Terrain/Environment Data Fusion and Analyses	1											
2.0	Resource Acquisition, Isolation and Preparation												
2.1	Resource Excavation/Acquisition												
	Granular	1											
	Hard - mineral and/or icy	1											
	Mars Atmosphere	1											
2.2	Resource Preparation before Processing												
	Size Reduction - Crushing/Grinding	1				1							
	Mineral Seperation	1				1							
	Size Sorting - Fractions	1				1							
	Atmosphere Constituent Separation	3											
.2.3	Resource Transfer												
	Solid Material Transfer	2											
	Gas Transfer												
2.4	Resource delivery from Mine Site and Removal												
	Implement integration/operation	1											
	Mobility-Traversibility for Resource Delivery/Removal	1						2					
	Autonomy for Resource Delivery/Removal							2		3			
	Comm&Nav for Resource Delivery/Removal									6			
	Power for Resource Delivery/Removal												

			±		pu		×	Ħ	΄,		જ	
[= ISPCP-led Gap Currently Identified	es	Cryogenic Fluid Management	-×	Adv Materials, Structures, and Manufacturing	S	Autonomous Sys. & Robotics	Extreme Access/Environment	On-orbit Servicing, Assembly, and Manufacturing		Advanced Communications Navigation	
ſ	01. 6. 135. 1.11. 25. 1	labl	age	11 8	ture	tem	Rob	ron	ssel		catic	
l	= Other Capability-led Identified	l m	Jan	ppo	25	Sys	∞.	N	A g	S	E	
	= ISPCP SCDP Gap linked to AMSM Capability Need	in Situ Prop/Consumables	₽	Advanced Life Support & Human Performance	s, St	Advanced Power Systems	Sys	ss/E	On-orbit Servicing,	Advanced Avionics	<u>ا</u> ۵	aft
		ĕ	E	Life	rials	Pov	snc	9	fact	Ā	اق _	ec.
	# = Known number of Gaps	g	enic	ced Pe	Adv Materials, Manufacturing	Sed	ŭ	Je A	oit S	ced	Advanced Navigation	Small Spacecraft
		l ii	,0ge	van	N N	/auc	ton	reu	ρον	van	van	le le
WBS#	In Situ Propellant & Consumable Production	=	S	Ad Hur	Ad Ma	Adv	Au	X	On	Ad	Ad Nav	Sm
3.0	Resource Processing for Production of Mission Consumables											
3.1	Resource Storage and Feed To/From Processing Reactor	1										
3.2	Regolith Processing to Extract Oxygen	2										
3.3	Regolith Processing to Extract Water											
	Enclosed reactor	2										
	Subsurface heating/vapor collection	2										
3.4	Carbon Dioxide Processing											
	Carbon Dioxide to Oxygen	2										
	Carbon Dioxide to Methane	2										
3.5	Water Processing	2		3								
3.6	Instrumentation to Characterize Processing Performance											
	Instruments for mineral/chemical characterization	1										
	Instruments for product purity characterization	1		_	\vdash							
3.7	Product/Reactant Separation	2		1	\vdash							
3.8	Contaminant Removal from Reagents/Products	1		3								
3.9	Power for Resource Processing			ļ								
	Solar thermal	1		ļ		_						
	Electrical					3						
3.10	Autonomous/Supervised Processing Operations	1					2					
3.11	Surface Cryogenic Product Liquefaction, Storage & Transfer											
	O ₂ /CH ₄ Liquefaction		1									
	H ₂ Liquefaction		1									
	O ₂ /CH ₄ Zero-loss Storage		1									
	H ₂ Zero-loss Storage		1									
	O ₂ /CH ₄ Zero-loss Transfer		1						1			
	H ₂ Zero-loss Transfer		1						1			
4.0	Resource Processing for Production of Manufacturing and		_						-			
7.0	Construction Feedstock											
4.1	In Situ Excavation and Movement for Construction	5		†			1		1	1		1
4.2	Resource Preparation for Construction Feedstock			†			1		1	1		1
	Shape/Size Manipulation	1		1								
	Constituent Manipulation	1										
	Feedstock Quality Measurement	1		1			1		1			
4.3	Material transfer	2		1			1		1			
4.4	Resource Processing to Extract Metals/Silicon	2										
4.5	Trash/Waste Processing											
	To Plastic	2		2								

In Situ Propellant & Consumable Production (ISPCP) Phases of Evolution and Use

	1	1	\	 			
	Demo	Pilot	Crewed Ascent	Full Descent	Single	Human	Commercial
	Scale	Plant	Vehicle*	Stage*	Stage	Mars	Cis-Lunar
			3 Stage Arc	h to NRHO	to NRHO**	Transportation ^t	Transportation ^
Timeframe	days to months	6 mo - 1 year	1 mission/yr	1 mission/yr	1 mission/yr	per year	per year
Demo/System Mass ^^	10's kg to low 100's kg	1 mt O ₂ Pilot 1.3 – 2.5 mt Ice Mining	1400 to 2200 kg	2400 to 3700 kg	Not Defined	Not Defined	29,000 to 41,000 kg
Amount O ₂	10's kg	1000 kg	4,000 to 6,000 kg	8,000 to 10,000 kg	30,000 to 50,000 kg	185,000 to 267,000 kg	400,000 to 2,175,000 kg
Amount H ₂	10's gms to kilograms	125 kg		1,400 to 1,900 kg	5,500 to 9,100 kg	23,000 to 33,000 kg	50,000 to 275,000 kg
Power for O ₂ in NPS	100's W	~3 KW	20 to 32 KW	40 to 55 KW	N/A	N/A	N/A
Power for H ₂ O in PSR	100's W	~2 KW		~25 KW	14 to 23 KW		150 to 800 KW
Power for H_2O to O_2/H_2 in NPS		~4 KW		~48 KWe	55 to 100 KWe		370 to 2,000 KWe

NPs = Near Permanent Sunlight

- Table use best available studies and commercial considerations to guide development requirements/FOMs
- Table provides rough guide to developers and other surface elements/Strategic Technology Plans for interfacing with ISRU

PSR = Permanently Shadowed Region

^{*}Estimates from rocket equation and mission assumptions

^{**}Estimates from J. Elliott, "ISRU in Support of an Architecture for a Self-Sustained Lunar Base"

^t Estimate from C. Jones, "Cis-Lunar Reusable In-Space Transportation Architecture for the Evolvable Mars Campaign"

[^] Estimate from "Commercial Lunar Propellant Architecture" study

^{^^} Electrical power generation and product storage mass not included

Lunar ISRU Strategy: Leader/Follower

STMD has a **leader/follower** path defined for lunar ISRU

- <u>Ice mining</u> (Leader) Potential to provide LO₂/LH₂ propulsion, crew consumables, and water for radiation protection
- O₂ from regolith (follower) Provide oxidizer and crew consumables

Precursors and demonstrations

- Volatile prospecting with PRIME-1 & VIPER (2022)
- O₂ from Regolith high-fidelity ground demo in TVC in FY20 22/23

Knowledge gained from precursors and demonstrations will inform the decision for Pilot and Full-scale Plants

Pilot Plant

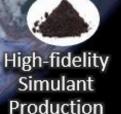
- Relevant scale plant (100's of kg/yr)
- Demonstrates core capabilities and subsystems
- Products available for SMD, HEOMD, or commercial partners

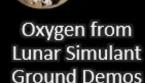
ISRU Lunar Development and Demonstration Timeline

Reconnaissance, Prospecting, Sampling

Resource Acquisition & Processing

Pilot Consumable Production


Sub-system Demonstrations: Investigate, sample, and analyze the environment for mining and utilization.


Follow The Natural Resources: Demonstrations of systems for extraction and processing of raw materials for future mission consumables production and storage.

Sustainable Exploration: Scalable Pilot - Systems demonstrating production of consumables from in-situ resources in order to better support sustained human presence.

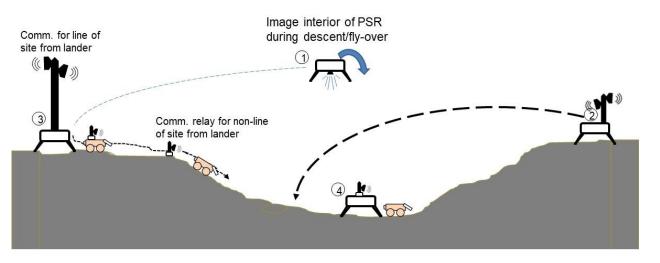
CLPS Drill Down Select

Polar Resources Ice Mining Experiment (Prime-1) on CLPS

Volatiles Investigation Polar Exploration Rover (VIPER)

ISRU Subsystem Consumables Extraction Demos

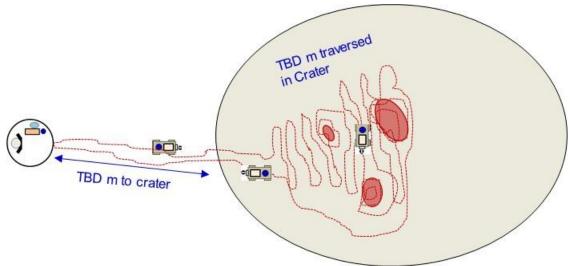
Scalable Pilot - ISRU Systems for Consumable Production



ISRU Concepts of Operation – Water Resource Assessment

Exploratory Evaluation of Polar Resources

- ① Ejectable/deployable payloads into PSR during descent/fly-over: Payloads are short-lived stationary or mobile assets
- 2) Ejectable/deployable payloads into PSR after landing near PSR: Payloads are short-lived stationary or mobile assets
- ③ Payloads deployed after landing next to PSR. Communication from orbit, lander, or relay deployed at PSR rim.
- 4 Land directly in PSR. Communication from lander. Payload is attached to lander or deployable for short duration operation


Landing Options

- In PSR
- On edge/rim of PSR

Power Options

- Batteries
- Power Beaming
- Power Cables

Detailed-Focused Polar Resource Assessment

Landing Options

- In PSR or in shadowed crater
- On edge/rim of PSR

Power Options

- Nuclear reactor, batteries on rover
- Advanced RTG on rover with batteries
- Solar arrays in sunlight, batteries on rover
- Solar arrays in sunlight, fuel cell on rover

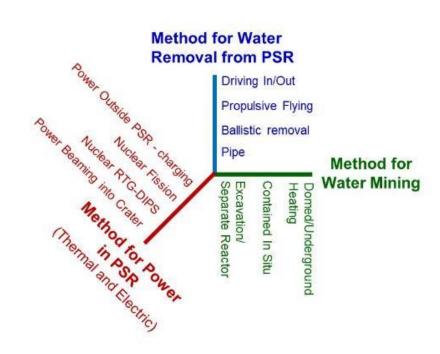
Communication & Navigation Options for Rover

- Orbital relay to Earth via Gateway or communication satellite
- Line of site or Non-line of site communication relays from rover-to-lander, with lander-to-Earth direct or thru relay

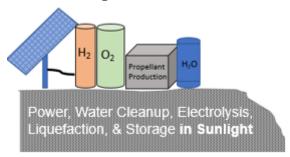
Note: Need near continuous communications to allow for tele-operation

ISRU Concepts of Operation - Ice Mining Currently Low TRL and Significant Resource Unknowns

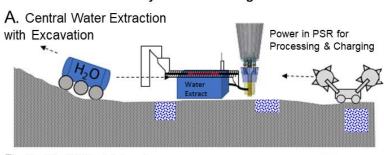
Three main drivers for Water Mining Architecture viability

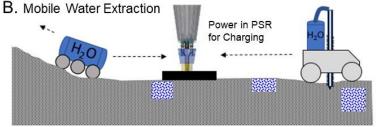

- 1. Method of Water Mining
- 2. Method of Power in Crater
- 3. Method of Water removal from Crater

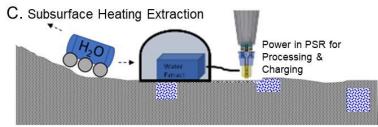
Application of *Mining Technologies* are highly dependent on:


- Resource Depth Access: How deep the water resource can be for a given concept to work.
- Spatial Resource Definition: How homogenous is the resource
- Resource Geotechnical Properties: How hard and porous is the icy regolith
- Volatiles Retention: How much of the volatiles are captured vs lost to the environment.
- Material Handling: How much interaction is required with the regolith.

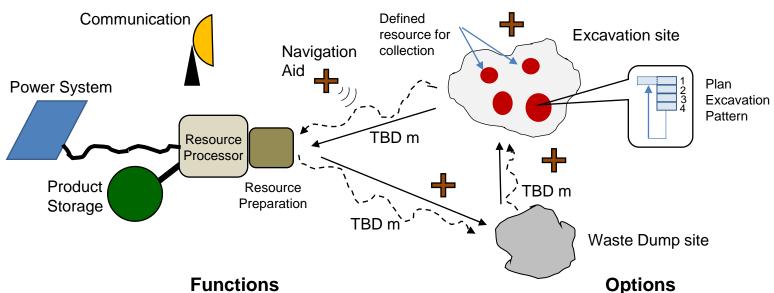
Preliminary Assessment

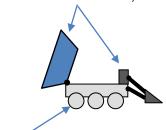

Concepts	Architect ure Option			Status	Resource Depth	Spatial Resource	Volatiles	Material
	IRSU plant	Mobile	In-situ		access	definition	retention	Handling
Auger Dryer	х			Breadboard Laboratory hardware	Moderate (cm)	10s of Meters	Low- moderate	High
Microwave Vessel	х	?		Breadboard Laboratory hardware	Moderate (cm)	10s of Meters	Low- moderate	High
Microwave Zamboni		Х	х	Concept Study	Surface	10s of Meters	Low	Low
Vibrating Tray	х	х		Breadboard Laboratory hardware	Moderate (cm)	10s of Meters	Low- moderate	High
Coring Auger		х	х	Breadboard Laboratory hardware	Deep (m)	Meters	High	Moderate
Heated Dome			х	Concept Study	Surface	Meter	High	Low
Heated batch (Resolve EBU)	х	?		Field demonstrations	Moderate (cm)	10s of Meters	Low- moderate	High
Water jet/Dome			х	Concept Study	Moderate (cm)	Meter	High	Low




In Sunlit Region; Crater Rim

In Permanently Shadowed Region




ISRU Concepts of Operation – Oxygen (Metal) Extraction TRL 2 to 5 Depending on the Process/Technology

Implements

- Removable / Exchangeable
- Common structure, data, electrical interface

High Traction Mobility Platform

- Removable/ Exchangeable Parts
- Common motors/parts with Implements

Traverse back and forth from desired endpoints: plant, resource zone, dump zone Smart control and sensors on rover: it selects its own path and avoids obstacles

• Path selected on Earth, rover follows path: internal nav or external beacons

= Unprepared path = Prepared path TBD = 100 to 1000 m

- Rover selects location for drilling/excavation
- Patterns / locations selected on Earth
 - Location determined as rover arrives based on past knowledge and site survey
 - Rover goes to location: internal nav, external beacons, and/or imaging/LIDAR

Device interacts with soil/regolith

- Operate extraction device depending on material: drill, auger, downhole scoop, bucket-wheel/drum, ripper, etc
- Pre-planned motions, force-feedback autonomous, human controlled.

Rover interacts with ISRU Plant

- Locates and delivers soil/regolith for processing; Locates and receives spent regolith
- Locates dirty water transfer connection for On-rover soil processing
- Locates and connects to charging port for battery or fuel cell resupply

ISRU Plant processes regolith

- Pre-established operating conditions and timelines
- Regolith pre/post evaluation for process efficiency evaluation and adjustment

of aware Commands doing Each is are **Smart Platforms** what the others multiple assets

ISPCP Capability Gaps

Resource Assessment Capability Gaps

- Surface features and geotechnical data on regolith outside and inside permanently shadowed craters (PSRs)
- Understanding of water and contaminants as a function of depth and areal distribution
- Understanding of subsurface water/volatile release with heating
- Resolution of hydrogen and subsurface ice at <10's m scale (or less) for economic assessment & mine planning (orbital/surface)
- Instrument for polar regolith sample heating and released volatile characterization (minimum loss during transfer/evaluation)
- Long duration operations at <100 K temperatures and lunar vacuum
- Traversibility inside and in/out of PSRs
- Increased autonomy and better communications into PSRs
- Long-duration mobile polar resource assessment operations (nuclear or power beaming)

Mining Polar Water Capability Gaps

- Limited knowledge/understanding of polar water depth, distribution, concentration to at least 1 m below the surface and multiple sq km.
- Limited knowledge/understanding of regolith properties within PSR
- Feasibility and operation of downhole ice/water vaporization and collection in cold-trap under lunar PSR conditions
- Feasibility and operation icy regolith transfer and processing in reactor under lunar PSR conditions
- Other volatile capture and separation; contaminant removal
- Water electrolysis, clean-up, and quality measurement for subsequent electrolysis or drinking (10,000's kg)
- Long-term operation under lunar PSR environmental conditions (100's of days, 10,000's kg of water)
- Electrical power & Thermal energy in PSRs for ice mining/processing (10's of KWs)

Oxygen Extraction Capability Gaps

- Increase scale of regolith processing by 1 to 3 orders to reach minimum of 10 mT O₂/yr (depending on method)
- Increase duration operation under lunar environmental conditions (100's of days, 10,000's kg of O₂)
- Long-life, regolith transfer (100's mT) and low leakage regolith inlet/outlet valves (10,000's cycles)
- Deployable large scale solar collection/thermal energy transfer for regolith melting
- Regenerative oxygen clean-up for direct oxygen production (10,000's kg)
- Water electrolysis, clean-up, and quality measurement for subsequent electrolysis or drinking (10,000's kg)
- Autonomous process monitoring, including measuring mineral properties/oxygen content before and after processing

SBIRs are Important to Fill ISRU Gaps

Recent Solicitation Topics and Selections

SBIR 2020

Solar concentrators for O2/Construction

- Solar Concentrator Oxygen Reactor with Continuous Heating Blueshift <u>Lunar Ice Mining</u>
- Thermal Management System for Ice Miners Advanced Cooling Technologies
- ISRU Collector of Ice in the Cold Lunar Environment Paragon Space Development
- Lunar Ice Mining Using a Heat-Assisted Cutting Tool Sierra Lobo

Novel O2 Extraction

- Ionic Liquid-Assisted Electrochemical Extraction of Oxygen Faraday Technology
- Molten Regolith Electrolysis Lunar Resources

SBIR 2019

Solar concentrators for O2/Construction

- Deployable Solar Concentrator Opterus Research
- Solar Concentrator for Lunar Applications Physical Sciences*

Molten Oxide Electrolysis

Beneficiation/Size Sorting

- Size Sorted Regolith Systems Grainflow Dynamics
- Payloads for Lunar Resources: Volatiles
- Lunar Exploration Gas Spectrometer Pioneer Astronautics
- NeuRover Radiation Detection Technologies*

SBIR 2018

Mars Atmosphere Collection and Separation

- Liquid Sorption Pump Pioneer Astronautics*
- Gas Inlet Sensor for Measuring Dust Particle Size Southwest Sciences Carbon Dioxide Processing
- Room Temperature Electrolysis for O2 Generation Dioxide Materials
- Redox Tolerant Cathode for SOE Stacks OxEon*
- Highly Efficient Separation and Recirculation of Unreacted CO2 TDA Research
- Dehydration Resistant and Dimensionally Stable High Performance Membrane Giner
- Humidity Monitor for ISRU on Mars Intelligent Optical Systems

Lunar Resources: Volatiles - Small Payloads for Lunar Mission

 High Resolution Scanning of Sub-Surface Liquid Water with Mobile Neutron Spectrometer – Radiation Detection Technologies

Success Story: Infusion of Multiple SBIR Derived Subsystems Into

In-Situ Resource Utilization (ISRU) Analog Field Test

2009 Phase III – Carbothermal Reduction of Regolith, Orbital Technologies Corp., to be completed 9/30/2010 2001 & 2002 Phase I's – Carbothermal Reduction of Regolith, Orbital Technologies Corp., completed 4/30/2002, 7/30/2003 2006 & 2009 Phase II & III – Solar Concentrator, Physical Sciences Inc., completed 4/21/2009 (III) & to be 09/29/2010 (II) 2009 Phase II & IPP – Pneumatic Regolith Transport, Honeybee Robotics, Phase II completed 5/30/2009, IPP on 2/26/2010 2007 Phase II & III– LO₂/CH₄ Thruster, WASK, completed 2009

Dust to Thrust - End-to-end processing and use of lunar derived oxygen

LO₂/CH₄ Thruster

- 17 test fires, with reliable ignition despite dusty field environment
- Operated on oxygen produced from regolith

Pneumatic Regolith Transport

 0.6 – 0.7 kg per minute transfer;
 99% material removal from pneumatic gas

Constellation Application:

<u>CxP Need:</u> Oxygen Production from Lunar Regolith & Surface Construction of Landing Pads
<u>Vehicle Elements:</u> Lunar Surface Systems Outpost

ETDP Project: In-Situ Resource Utilization (ISRU) Project

Carbothermal System

 9.5 to 10% oxygen extraction efficiency; complete regeneration of methane reactant; water collected for processing Solar Concentrator

 Up to 1750 C to tephra surface and 54 to 60% efficiency even with non-optimum primary mirrors and fiber optics (to reduce cost)